Neural Network On-Line Learning Control of Spacecraft Smart Structures

نویسنده

  • Christopher Bowman
چکیده

The overall goal is to reduce spacecraft weight. volume, and cost by online adaptive non-linear control of flexible structural components. The objective of this effort is to develop an adaptive Neural Network (NN) controller for the Ball C-Side 1m x 3m antenna with embedded actuators and the RAMS sensor system. A traditional optimal controller for the major modes is provided perturbations by the NN to compensate for unknown residual modes. On-line training of recurrent and feed-forward NN architectures have achieved adaptive vibration control with unknown modal variations and noisy measurements. On-line training feedback to each actuator NN output is computed via Newton's method to reduce the difference between desired and achieved antenna positions. 1 ADAPTIVE CONTROL BACKGROUND The two traditional approaches to adaptive control are 1) direct control (such as perfonned in direct model reference adaptive controllers) and 2) indirect control (such as performed by explicit self-tuning regulators). Direct control techniques (e.g. model-reference adaptive cootrul) provide good stability however are susceptible to noise. Whereas indirect control techn;'q~es (e.g. explicit self-tuning regulators) have low noise susceptibility and good convergence rate. However they require more control effort and have worse stability and are less roblistto mismodeling. NNs synergistically augment traditional adaptive control techniques by providing improved mismodeling robustness both adaptively on-line for time-varying dynamics as well as in a learned control mode at a slower rate. The NN control approaches which correspond to direct and indirect adaptive control are commonly known as inverse and forward modeling. respectively. More specifically, aNN which maps the plant state and its desired perfonnance to the control command is called an inverse model, a NN mapping both the current plant state and control to the next state and its performance is called the forward model. When given a desired performwce and the current state. the inverse model generates the control. see Figure 1. The actual perfonnance is observed and is used to train/update the inverse model. A significant problem occurs when the desired and achieved perfonnance differ greatly since the model near the desired slate is not changed. This condition is corrected by adding random noise to the control outputs so as to extend the state space

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks

Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...

متن کامل

Adaptive Quaternion Attitude Control of Aerodynamic Flight Control Vehicles

Conventional quaternion based methods have been extensively employed for spacecraft attitude control where the aerodynamic forces can be neglected. In the presence of aerodynamic forces, the flight attitude control is more complicated due to aerodynamic moments and inertia uncertainties. In this paper, a robust nero-adaptive quat...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992